Areas of expertise
- Medical Parasitology 110803
- Infectious Agents 060502
- Enzymes 060107
- Cell Metabolism 060104
- Basic Pharmacology 111501
- Receptors And Membrane Biology 060110
Publications
- Guan, J, Spry, C, Tjhin, E et al. 2021, 'Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides', Journal of Medicinal Chemistry, vol. 64, pp. 4478-4497.
- Tjhin, E, Howieson, V, Spry, C et al. 2021, 'A novel heteromeric pantothenate kinase complex in apicomplexan parasites', PLoS Pathogens, vol. 17, no. 7.
- Spry, C, Barnard, L, Kok, M et al. 2020, 'Toward a Stable and Potent Coenzyme A-Targeting Antiplasmodial Agent: Structure-Activity Relationship Studies of N-Phenethyl-α-methyl-pantothenamide', ACS Infectious Diseases, vol. 6, no. 7, pp. 1844-1854.
- Fisher, G, Cobbold, S, Jezewski, A et al. 2020, 'The key glycolytic enzyme phosphofructokinase is involved in resistance to antiplasmodial glycosides', mBio, vol. 11, no. 6, pp. 1-19.
- Domingo, R, van der Westhuyzen, R, Hamann, A et al. 2019, 'Overcoming synthetic challenges in targeting coenzyme A biosynthesis with the antimicrobial natural product CJ-15,801', RSC Medicinal Chemistry (Formerly MedChemComm), vol. 10, no. 12, pp. 2118-2125.
- Spry, C, Sewell, A, Hering, Y et al 2018, 'Structure-activity analysis of CJ-15,801 analogues that interact with Plasmodium falciparum pantothenate kinase and inhibit parasite proliferation', European Journal of Medicinal Chemistry, vol. 143, pp. 1139-1147.
- Tjhin, E, Spry, C, Sewell, A et al 2018, 'Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues', PLoS Pathogens, vol. 14, no. 4, pp. 1-30.
- Guan, J, Tjhin, E, Howieson, V et al 2018, 'Structure-Activity Relationships of Antiplasmodial Pantothenamide Analogues Reveal a New Way by Which Triazoles Mimic Amide Bonds', ChemMedChem, vol. 13, no. 24, pp. 2677-2683pp.
- de Villiers, M, Spry, C, Macuamule, C et al 2017, 'Antiplasmodial Mode of Action of Pantothenamides: Pantothenate Kinase Serves as a Metabolic Activator Not as a Target', ACS Infectious Diseases, vol. 3, no. 7, pp. 527-541.
- Guan, J, Hachey, M, Puri, L et al 2016, 'A cross-metathesis approach to novel pantothenamide derivatives', Beilstein Journal of Organic Chemistry, vol. 12, pp. 963-968.
- Howieson, V, Tran, E, Hoegl, A et al 2016, 'Triazole substitution of a labile amide bond stabilizes pantothenamides and improves their antiplasmodial potency', Antimicrobial Agents and Chemotherapy, vol. 60, no. 12, pp. 7146-7152pp.
- Fletcher, S, Lucantoni, L, Sykes, M et al 2016, 'Biological characterization of chemically diverse compounds targeting the Plasmodium falciparum coenzyme A synthesis pathway', Parasites and Vectors, vol. 9, no. 1, pp. 1-13.
- Tran, P, Tate, C, Ridgway, M et al 2016, 'Human dihydrofolate reductase influences the sensitivity of the malaria parasite Plasmodium falciparum to ketotifen? A cautionary tale in screening transgenic parasites', International Journal for Parasitology: Drugs and Drug Resistance, 6,179-183.
- Berna, A, McCarthy, J, Wang, R et al 2015, 'Analysis of Breath Specimens for Biomarkers of Plasmodium falciparum Infection', Journal of Infectious Diseases, vol. 212, no. 7, pp. 1120-1128.
- Macuamule, C, Tjhin, E, Jana, C et al 2015, 'A Pantetheinase-Resistant Pantothenamide with Potent, On-Target, and Selective Antiplasmodial Activity', Antimicrobial Agents and Chemotherapy, vol. 59, no. 6, pp. 3666-3668.
- Saliba, K & Spry, C 2015, 'Coenzyme A Biosynthesis', in Marcel Hommel & Peter Kremsner (ed.), Encyclopedia of Malaria, Springer New York, Online, pp. 1-11pp.
- Spry, C, Saliba, K & Strauss, E 2014, 'A miniaturized assay for measuring small molecule phosphorylation in the presence of complex matrices', Analytical Biochemistry, vol. 451, pp. 76-78.
- Hoegl, A, Darabi, H, Tran, E et al 2014, 'Stereochemical modification of geminal dialkyl substituents on pantothenamides alters antimicrobial activity', Bioorganic and Medicinal Chemistry Letters, vol. 24, no. 15, pp. 3274-3277.
- Saliba, K & Spry, C 2014, 'Exploiting the coenzyme A biosynthesis pathway for the identification of new antimalarial agents: The case for pantothenamides', Biochemical Society Transactions, vol. 42, no. 4, pp. 1087-1093.
- Spry, C, Macuamule, C, Lin, Z et al 2013, 'Pantothenamides Are Potent, On-Target Inhibitors of Plasmodium falciparum Growth When Serum Pantetheinase Is Inactivated', PLOS ONE (Public Library of Science), vol. 8, no. 2, pp. 1-12.
- de Villiers, M, Macuamule, C, Spry, C et al. 2013, 'Structural modification of pantothenamides counteracts degradation by pantetheinase and improves antiplasmodial activity', ACS Medicinal Chemistry Letters, vol. 4, no. 8, pp. 784-789.
- Tjhin, E, Staines, H, Van Schalkwyk, D et al 2013, 'Studies with the Plasmodium falciparum hexokinase reveal that PfHT limits the rate of glucose entry into glycolysis', FEBS Letters, vol. 587, no. 19, pp. 3182-3187.
- Chan, X, Wrenger, C, Stahl, K et al. 2013, 'Chemical and genetic validation of thiamine utilization as an antimalarial drug target', Nature Communications, vol. 4, pp. 1-11.
- Van Schalkwyk, D, Saliba, K, Biagini, G et al 2013, 'Loss of pH Control in Plasmodium falciparum Parasites Subjected to Oxidative Stress', PLoS ONE, 8(3), e58933/1-8.
- Henry, R, Cobbold, S, Allen, R et al 2010, 'An acid-loading chloride transport pathway in the intraerythrocytic malaria parasite, Plasmodium falciparum', Journal of Biological Chemistry, 285, 18615-18626.
- Kirk, K, Staines, H, Martin, R et al 1999, 'Transport properties of the host cell membrane', in Gregory R. Bock, Gail Cardew (ed.), Novartis Foundation Symposium 226 - Transport and Trafficking in the Malaria-Infected Erythrocyte, John Wiley & Sons, Inc., England.
- Saliba, K, Folb, P & Smith, P 1998, 'Â Role for the Plasmodium falciparum digestive vacuole in chloroquine resistance', Biochemical Pharmacology, vol. 56, no. 3, pp. 313-320.
- Saliba, K & Kirk, K 1998, 'Clotrimazole inhibits the growth of the malaria parasite Plasmodium falciparum in vitro'. Transactions of the Royal Society of Tropical Medicine and Hygiene, 92, 666-667.
- Saliba, K & Kirk, K 1998, 'Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum-infected human erythrocytes via a parasite-induced pathway', Molecular and Biochemical Parasitology, 94, 297-301.
- Saliba, K, Horner, H & Kirk, K 1998, 'Transport and metabolism of the essential vitamin pantothenic acid in human erythrocytes infected with the malaria parasite Plasmodium falciparum', Journal of Biological Chemistry, 273, 10190-10195.
- Spry, C, Van Schalkwyk, D, Strauss, E et al 2010, 'Pantothenate Utilization by Plasmodium as a Target for Antimalarial Chemotherapy', Infectious Disorders - Drug Targets, vol. 10, no. 3, pp. 200-216.
- Van Schalkwyk, D, Chan, X, Misiano, P et al. 2010, 'Inhibition of Plasmodium falciparum pH regulation by small molecule indole derivates results in rapid parasite death', Biochemical Pharmacology, vol. 79, no. 9, pp. 1291-1299.
- Spry, C & Saliba, K 2009, 'The Human Malaria Parasite Plasmodium falciparum Is Not Dependent on Host Coenzyme A Biosynthesis', Journal of Biological Chemistry, vol. 284, no. 37, pp. 24904-24913.
- Kirk, K, Howitt, S, Broer, S et al 2009, 'Purine uptake in Plasmodium: transport versus metabolism', Trends in Parasitology, 25, 246-249.
- Van Schalkwyk, D, Priebe, W & Saliba, K 2008, 'The inhibitory effect of 2-halo derivatives of D-glucose on glycolysis and on the proliferation of the human malaria parasite Plasmodium falciparum', Journal of Pharmacology and Experimental Therapeutics, vol. 327, no. 2, pp. 511-517.
- Lehane, A, Hayward, R, Saliba, K et al 2008, 'A verapamil-sensitive chloroquine-associated H+ leak from the digestive vacuole in chloroquine-resistant malaria parasites', Journal of Cell Science, vol. 121, no. 10, pp. 1624-1632.
- Lehane, A & Saliba, K 2008, 'Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite', BMC Research Notes, vol. 1, no. 26, p. 5.
- Spry, C, Kirk, K & Saliba, K 2008, 'Coenzyme A biosynthesis: an antimicrobial drug target', FEMS Microbiology Reviews, vol. 32, pp. 56-106.
- Saliba, K, Lehane, A & Kirk, K 2008, 'A polymorphic drug pump in the malaria parasite', Molecular Microbiology, vol. 70, no. 4, pp. 775-779.
- Downie, M, Saliba, K, Broer, S et al 2008, 'Purine nucleobase transport in the intraerythrocytic malaria parasite', International Journal for Parasitology, 38, 203-209.
- Lehane, A, Marchetti, R, Spry, C et al 2007, 'Feedback Inhibition of Pantothenate Kinase Regulates Pantothenol Uptake by the Malaria Parasite', Journal of Biological Chemistry, vol. 282, no. 35, pp. 25395-25405.
- Kirk, K & Saliba, K 2007, 'Targeting Nutrient Uptake Mechanisms in Plasmodium', Current Drug Targets, vol. 8, no. 1, pp. 75-88.
- Staines, H, Alkhalil, A, Allen, R et al 2007, 'Electrophysiological studies of malaria parasite-infected erythrocytes: Current status', International Journal for Parasitology, vol. 37, no. 5, pp. 475-482.
- Downie, M, Saliba, K, Howitt, S et al 2006, 'Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1', Molecular Microbiology, 60, 738-748.
- Hayward, R, Saliba, K & Kirk, K 2006, 'The pH of the digestive vacuole of Plasmodium falciparum is not associated with chloroquine resistance', Journal of Cell Science, 119, 1016-1025.
- Saliba, K (co-first author), Martin, R (co-first author), Broer, A et al 2006, 'Sodium-dependent uptake of inorganic phosphate by the intracelluar malaria parasite', Nature, vol. 443, pp. 582-585.
- Hayward, R, Saliba, K & Kirk, K 2005, 'Mutations in pfmdr1 Modulate the Sensitivity of Plasmodium falciparum to the Intrinsic Antiplasmodial Activity of Verapamil', Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 840-842.
- Hayward, R, Saliba, K & Kirk, K 2005, 'pfmdr1 mutations associated with chloroquine resistance incur a fitness cost in Plasmodium falciparum', Molecular Microbiology, vol. 55, no. 4, pp. 1285-1295.
- Kirk, K, Martin, R, Broer, S et al 2005, 'Plasmodium permeomics: membrane transport proteins in the malaria parasite.', Current Topics in Microbiology and Immunology, vol. 295, pp. 325-56.
- Saliba, K & Kirk, K 2005, 'CJ-15,801, a fungal natural product, inhibits the intraerythrocytic stage of Plasmodium falciparum in vitro via an effect on pantothenic acid utilisation', Molecular and Biochemical Parasitology, vol. 141, no. 1, pp. 129-131.
- Spry, C, Chai, C, Kirk, K et al 2005, 'A Class of Pantothenic Acid Analogs Inhibits Plasmodium falciparum Pantothenate Kinase and Represses the Proliferation of Malaria Parasites', Antimicrobial Agents and Chemotherapy, vol. 49, no. 11, pp. 4649-4657.
- Saliba, K, Ferru, I & Kirk, K 2005, 'Provitamin B5 (Pantothenol) Inhibits Growth of the Intraerythrocytic Malaria Parasite', Antimicrobial Agents and Chemotherapy, vol. 49, no. 2, pp. 632-637.
- Saliba, K, Krishna, S & Kirk, K 2004, 'Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative', FEBS Letters, vol. 570, no. 1-3, pp. 93-96.
- Lehane, A, Saliba, K, Allen, R et al 2004, 'Choline uptake into the malaria parasite is engergized by the membrane potential', Biochemical and Biophysical Research Communications, vol. 320, no. 2, pp. 311-317.
- Go, M, Liu, M, Wilairat, P et al 2004, 'Antiplasmodial Chalcones Inhibit Sorbitol-Induced Hemolysis of Plasmodium falciparum-Infected Erythrocytes', Antimicrobial Agents and Chemotherapy, vol. 48, no. 9, pp. 3241-3245.
- Kirk, K & Saliba, K 2003, 'The Membrane Physiology of the Malaria-Infected Red Cell', in Ingolf Bernhardt & J Clive Ellory (ed.), Red Cell Membrane Transport in Health and Disease, Springer, Germany, pp. 569-585.
- Saliba, K, Allen, R, Zissis, S et al. 2003, 'Acidification of the Malaria Parasites Digestive Vacuole by a H+-ATPase and a H+-pyrophosphatase', Journal of Biological Chemistry, vol. 278, no. 8, pp. 5605-5612.
- Bray, P, Saliba, K, Davies, J et al 2002, 'Further comments on the distribution of acridine orange fluorescence in P. falciparum-infected erythrocytes', Molecular and Biochemical Parasitology, vol. 119, no. 2, pp. 311-313.
- Bray, P, Saliba, K, Davies, J et al 2002, 'Distribution of acridine orange fluorescence in Plasmodium falciparum-infected erythrocytes and its implications for the evaluation of digestive vacuole pH', Molecular and Biochemical Parasitology, vol. 119, no. 2, pp. 301-304.
- Kirk, K & Saliba, K 2002, 'Chloroquine resistance and the pH of the malaria parasites digestive vacuole', Drug Resistance Updates, vol. 4, no. 6, pp. 335-338.
- Saliba, K & Kirk, K 2001, 'Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner', International Journal for Parasitology, vol. 31, no. 12, pp. 1321-1330.
- Biagini, G, Knodler, L, Saliba, K et al 2001, 'Na+-dependent pH Regulation by the Amitochondriate Protozoan Parasite Giardia intestinalis', Journal of Biological Chemistry, vol. 276, no. 31, pp. 29157-29162.
- Elliott, J, Saliba, K & Kirk, K 2001, 'Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum', Biochemical Journal, vol. 355, pp. 733-739.
- Saliba, K & Kirk, K 2001, 'H+-coupled Pantothenate Transport in the Intracellular Malaria Parasite', Journal of Biological Chemistry, 276, 18115-18121.
- Reed, M, Saliba, K, Caruana, S et al 2000, 'Pgh modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum', Nature, vol. 403, pp. 906-909.
- Krishna, S, Woodrow, C, Burchmore, R et al 2000, 'Hexose Transport in Asexual Stages of Plasmodium falciparum and Kinetoplastidae', Parasitology Today, vol. 16, no. 12, pp. 516-521.
- Rickards, R, Rothschild, J, Willis, A et al. 1999, 'Calothrixins A and B, Novel Pentacyclic Metabolites from Calothrix Cyanobacteria with Potent Activity against Malaria Parasites and Human Cancer Cells', Tetrahedron, vol. 55, pp. 13513-13520.
- Saliba, K & Kirk, K 1999, 'pH Regulation in the Intracellular Malaria Parasite, Plasmodium falciparum: H+ extrusion via a V-Type H+-ATPase', Journal of Biological Chemistry, vol. 274, no. 47, pp. 33213-33219.