Skip navigation
The Australian National University

Dr Rowena Ball

PhD, BSc Hons I + University Medal
A/Prof
ANU College of Physical and Mathematical Sciences

Areas of expertise

  • Applied Mathematics 0102
  • Physical Chemistry (Incl. Structural) 0306
  • Other Chemical Sciences 0399
  • Chemical Engineering 0904
  • Interdisciplinary Engineering 0915
  • Other Earth Sciences 0499
  • Evolutionary Biology Not Elsewhere Classified 060399

Research interests

The origin of life in the primordial soup, Nonlinear and complex dynamical systems, Decarbonation of fuels and flue gases,  Endex thermoreactive systems, Combustion theory and modelling, Thermochemical instabilities, Exergy analysis, Entropy generation analysis, Carbon sequestration via charcoal, Global carbon cycles, Railways and trains, Country pub lunches.

Biography

  • PhD (1997), BSc Hons I + University Medal (1993) Macquarie University
  • ARC Future Fellowship 2010–2014
  • Lagrange Fellowship in Complex Systems, ISI Foundation Italy 2005
  • ARC Postdoctoral Fellowship 2000–2003
  • APA, Energy Research Priority Area  1993–1996   

Researcher's projects

I am an applied mathematician and physical chemist with broad research expertise in nonlinear and complex dynamical systems. 

Current research is on the origins of life. In a series of four papers we have elucidated the role of hydrogen peroxide in mediating the RNA world and the development of biological homochirality: 

Rowena Ball and John Brindley (2015). The life story of hydrogen peroxide III: Chirality and physical effects at the dawn of life. Origins of Life and Evolution of Biospheres, in press, accepted 21 Aug 2015, https://www.academia.edu/15066653/The_life_story_of_hydrogen_peroxide_III_Chirality_and_physical_effects_at_the_dawn_of_life 

Rowena Ball and John Brindley (2015). The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J. R. Soc. Interface 12: 20150366. http://dx.doi.org/10.1098/rsif.2015.0366. https://www.academia.edu/13671496/The_life_story_of_hydrogen_peroxide_II._A_periodic_pH_and_thermochemical_drive_for_the_RNA_world

Rowena Ball and John Brindley (2015). Thiosulfate-hydrogen peroxide redox oscillator as pH driverfor ribozyme activity in the RNA world. Origins of Life and Evolution of Biospheres, in press, https://www.academia.edu/13671679/Thiosulfate-hydrogen_peroxide_redox_oscillator_as_pH_driver_for_ribozyme_activity_in_the_RNA_world. 

Rowena Ball and John Brindley (2014).  Hydrogen peroxide thermochemical oscillator as driver forprimordial RNA replication. J. R. Soc. Interface 11: 20131052. http://dx.doi.org/10.1098/rsif.2013.1052. https://www.academia.edu/6327988/Hydrogen_peroxide_thermochemical_oscillator_as_driver_for_primordial_RNA_replication 

My ARC Future Fellowship FT0991007 project is titled “The charXive challenge and the clean coal quest: thermokinetic principles and methods for capturing and sequestering carbon dioxide”.

The next 50 years will be the era during which the world's fuels must be decarbonised. Endex thermoreactive principles, which I co-invented in the mid 1990s, are providing a novel technology for separating carbon from fuels and flue gases. I am developing a suite of Endex decarbonation technologies in collaboration with an industry partner, Calix Ltd, and with collaborators from Imperial College London, the University of Leeds, and CanMet Energy.

Endex principles also underpin carbon capture from the atmosphere and have been used by nature for millions of years: the mechanism behind thermal decomposition of biomass is an Endex thermochemical oscillator that governs the distribution of carbon between the global solid black carbon reservoir and the atmospheric CO2 reservoir. My research is elucidating this mechanism.

Oscillatory thermal instability can also initiate thermal explosions. A grave threat to security is the use of liquid peroxide bombs by terrorists, and it seems grimly inevitable that their use as mass murder weapons will increase. My research on Endex systems has found that oscillatory thermal instability is the initiator of thermal runaway in liquid peroxides and also was the primary cause of the Bhopal disaster.

Keywords: Nonlinear and complex dynamical systems, Origin of life, Decarbonation of fuels and flue gases, Endex thermoreactive systems, Combustion theory and modelling, Thermochemical instabilities, Exergy analysis, Charcoal, Fire, Global carbon cycles, Quasi two-dimensional flows, Country pub lunches.

 

Available student projects

  1. The origin of life: dynamical modelling of the RNA world
  2. Second law analysis of carbon capture systems.
  3. Oscillatory thermal instability in liquid explosives.
  4. The role of vegetation fires in global carbon cycles.
  5. Topics in applied dynamical systems, stability, and chaos.

Publications

Return to top

Updated:  04 September 2015 / Responsible Officer:  Director (Research Services Division) / Page Contact:  Researchers